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SUMMARY

Purpose: In recent years, a variety of methods developed

in the field of linear and nonlinear time series analysis have

been used to obtain reliable predictions of epileptic sei-

zures. Because individual methods for seizure prediction

so far have shown statistical significance but insufficient

performance for clinical applications, we investigated pos-

sible improvements by combining algorithms capturing

different aspects of electroencephalogram (EEG) dynamics.

Methods: We applied the mean phase coherence and the

dynamic similarity index to long-term continuous intra-

cranial EEG data. The predictive performance of both

methods was assessed and statistically evaluated separately,

as well as by using logical ‘‘AND’’ and ‘‘OR’’ combinations.

Results: Used independently, either method resulted in a

statistically significant prediction performance in only a

few patients. Particularly the ‘‘AND’’ combination led to

improved prediction performances, leading to an increase

in sensitivity and/or specificity. For a maximum false pre-

diction rate of 0.15/h, the mean sensitivity improved from

about 25% for the individual methods to 43.2% for the

‘‘AND’’ and to 35.2% for the ‘‘OR’’ combination.

Discussion: This study shows that combinations of predic-

tion methods are promising new approaches to enhance

seizure prediction performance considerably. It allows

merging the individual benefits of prediction methods in a

complementary manner. Because either sensitivity or

specificity of seizure prediction methods can be improved

depending on the needs of the desired clinical application,

the combination opens a new window for future use in a

clinical setting.
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method combination.

Epilepsy, one of the most common chronic diseases
of the central nervous system, affects 0.5–1% of the
world’s population (Hauser et al., 1996). Presently about
one-third of all epilepsy patients cannot be treated ade-
quately by continuous administration of antiepileptic
drugs. Surgical resection of the epileptogenic nervous
tissue is an option only for a subgroup of these patients.
Hence, new means for the suppression of epileptic sei-
zures are highly desired. A prediction of the time when
epileptic seizures occur would not only allow warnings
to the patients such that they could avoid potentially
endangering situations, it would also open up new
opportunities for closed-loop therapeutic strategies.

Short-term intervention techniques could be used,
including electroencephalogram (EEG)–controlled local
application of anticonvulsant drugs (Stein et al., 2000),
or closed-loop electrical brain stimulation (Li & Mogul,
2007).

During recent years, a number of prediction methods
have been developed (Lehnertz & Elger, 1998; Martin-
erie et al., 1998; Le van Quyen et al., 1999; Mormann
et al., 2000; Litt et al., 2001; Iasemidis et al., 2001;
Schindler et al., 2002; Esteller et al., 2005; Iasemidis
et al., 2005; Kalitzin et al., 2005; Le van Quyen et al.,
2005; for recent reviews see Mormann et al., 2007;
Sackellares, 2008). Based on linear and nonlinear time
series analysis techniques, preseizure changes in the
dynamics of intracranial and scalp EEG recordings have
been examined and employed for seizure prediction.
Evidence for the existence of a preseizure state has
been given in several studies. Yet, retrospective studies
that involved statistical validation and correction for
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in-sample optimization reported significant seizure pre-
diction performances only for a subset of all patients
(Mormann et al., 2005; Schelter et al., 2006a). The
observed interindividual variation in performance may
be caused by diverse etiologies, exogenous triggers, and
the inherent physiologic variability among patients.

Because several mechanisms may contribute to inte-
rictal–ictal transitions (Lopes da Silva et al., 2003a,b), it
can be hypothesized that combinations of seizure predic-
tion techniques may show performances that are supe-
rior to those of the individual methods. As suggested by
Mormann et al. (2005), particularly the combination of
univariate and bivariate methods could be an auspicious
approach. These methods extract specific features, that
is, time series containing data that are derived from one
channel of the EEG, or from multiple channels, respec-
tively. They may identify different aspects of the local
and distributed brain dynamics contributing to a transi-
tion to ictal activity.

Using two prediction methods for which promising
results were found in previous studies, herein we inves-
tigate different kinds of combinations. Two basic types
of combinations were chosen following Boolean logic.
For a logical ‘‘AND’’ combination, the individual meth-
ods have to trigger an alarm during a given time win-
dow to cause an alarm of the combined system. For a
logical ‘‘OR’’ combination, each alarm of any of the
individual methods is considered as an alarm of the
combined system. Depending on the coincidence of
alarms triggered by the individual methods, either of
these combinations could provide particular advantages.
Two methods with low specificity could be linked using
the ‘‘AND’’ combination to select those predictions that
are generated quasi-simultaneously by both methods. If
correct predictions of both methods are strongly corre-
lated, this is expected to reduce the number of false
predictions considerably while preserving the sensitivity
of the individual methods. The ‘‘OR’’ combination
results in a unification of individual prediction methods,
as all alarms of individual methods lead to alarms of
the combined system. If, for example, each method is
able to predict a specific seizure type with high sensitiv-
ity, a combination using a logical ‘‘OR’’ would match
the correct predictions of both methods together.
Because false alarms also add up, the ‘‘OR’’ combina-
tion would show its superiority if the increase in sensi-
tivity outweighs a possible loss of specificity.

Herein we suggest an approach to optimize the combina-
tion of two seizure prediction techniques, resulting in one
combined prediction system. Hereby, the combination can
either be optimized for maximum sensitivity as pursued in
this article, or also for maximum specificity, depending
on the requirements of the desired intervention method.
For statistical validation, the prediction performance is
compared to a random predictor.

Materials and Methods

Applied individual prediction methods
In this study we investigated the seizure prediction per-

formance of combinations of two previously introduced pre-
diction methods, the mean phase coherence (MPC,
Mormann et al., 2000) and the dynamic similarity index
(SIM, Le van Quyen et al., 1999). The MPC is a measure of
phase synchronization between pairs of electrode channels,
for which preictal changes have been observed (Rosenblum
et al., 1996; Mormann et al., 2000, 2003a,b, 2005; Le van
Quyen et al., 2005; Winterhalder et al., 2006). The SIM is a
univariate measure comparing ongoing EEG dynamic of
one electrode channel to an interictal reference period
thereof. Again, distinctive changes preceding epileptic sei-
zures have been reported in several studies (Le van Quyen
et al., 1999, 2000, 2001a,b; Navarro et al., 2002, 2005;
Schelter et al., 2006b). Details about both methods are given
in the Supporting Information.

The seizure prediction characteristic
To evaluate the performance of seizure prediction meth-

ods, the seizure prediction characteristic has been intro-
duced (Winterhalder et al., 2003). It allows the assessment
of the results of prediction methods depending on the pre-
diction intervention time (IT), seizure occurrence period
(SOP), and a maximum rate of false alarms (FPRmax).
Alarms are issued when the feature time series falls below a
threshold, which is optimized for the respective feature. The
IT is defined as the minimum period of time between the
alarm and the earliest possible occurrence of a subsequent
seizure. In clinical applications, an intervention may be
applied during this time window. Following the IT, an SOP
is defined to limit the interval during which the seizure is
expected to occur. The shorter the SOP, the more precise the
prediction and the more limited is the time a patient is under
alert for a predicted seizure.

In addition to the sensitivity—defined as the ratio of cor-
rectly predicted seizures to the number of seizures investi-
gated—an assessment of the specificity of a certain
prediction method by evaluating long-term interictal data is
crucial (Winterhalder et al., 2003; Schelter et al., 2006a;
Mormann et al., 2007). For this purpose, a maximum rate of
tolerated false predictions FPRmax is predefined. In this
study, we typically applied a maximum false prediction rate
set to the average rate of clinical seizures, which is about
0.15 seizures per hour during presurgical monitoring (cf.
Haut et al., 2002; Winterhalder et al., 2003). This ensures
that on average no more false alarms are accepted than sei-
zures occur.

In order to test whether an observed prediction perfor-
mance is statistically significant, it has to be tested whether
it is better than random. To this end, the seizure prediction
characteristic was complemented by an analytical random
predictor, which does not exploit any information contained
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in the EEG data (Schelter et al., 2006a). The significance of
prediction performances can then be assessed by comparing
the observed sensitivity to the sensitivity of the random pre-
dictor, which is based on an identical FPRmax (cf. Support-
ing Information). If the observed sensitivity is indeed higher
than the sensitivity of the random predictor, it is regarded as
statistically significant.

To optimize prediction methods for individual patients,
both the duration of the IT and the SOP can be varied. For the
minimum duration of the preictal phase (IT), a wide range of
values was reported in the literature (cf. Mormann et al.,
2007). Therefore, an optimal IT was determined for each
patient. The increased number of free optimization parame-
ters was taken into account by the random predictor (for
details see Supporting Information). After an alarm, no fur-
ther alarms were considered within the ongoing IT and SOP.

Optimizing the combination of prediction methods
The thresholds for the features time series of each method

were chosen such that the overall performance of the combi-
nation was optimal with regard to sensitivity while keeping
to a predefined maximum false prediction rate FPRmax.

By the ‘‘AND’’ combination, an alarm is raised only if the
features of both individual methods cross thresholds during
a predefined time interval, the combination window (CW,
cf. Fig. 1A). By the ‘‘OR’’ combination (Fig. 1B), each
threshold crossing of each method triggers an alarm of
the combination, again under the constraint that the
temporal distance to the previous alarm must be larger than
the duration of IT + SOP. Compared to a single prediction
method, each additional method increases the number of
free optimization parameters of the combination due to the
additional thresholds, which can be chosen independently
for each method. For the ‘‘OR’’ combination, the achieved
sensitivity will be at least as good as the best of the
individual methods, as thresholds of all other methods can
be set to a value for which no alarms are raised. For the

‘‘AND’’ combination, this depends on the time course of the
actual features.

In order to decrease combinatorial complexity, which is
determined by the number of feature time series of the pre-
diction methods that are combined, the first part of the data
of each patient (including at least 36 h and at least three sei-
zures) was used for a preselection. For both individual pre-
diction methods, one optimal feature was determined, that
is, the best channel combination for the MPC and the best
channel for the SIM. This was performed by evaluating the
sensitivity of all features, averaged over ITs and SOPs of
10, 20, …, 60 min each and based on a maximum false pre-
diction rate of 0.15 false predictions per hour.

Both individual methods and their combinations were
then evaluated on the remaining part of the data retrospec-
tively. For fixed values of SOP and FPRmax, and for ITs of
10, 20, … 60 min, an optimal threshold was selected for the
previously chosen features. This is a threshold value
between zero and one, for which best sensitivity is observed,
given a false prediction rate of less or equal to FPRmax. If for
several thresholds the same optimal sensitivity was
achieved, the threshold with the lowest observed false pre-
diction rate was selected. For each type of combination,
thresholds were optimized simultaneously for both features,
and the ITs for which best sensitivities can be observed were
determined. Finally, statistical significance was tested by
comparison to the random predictor.

Patient characteristics and EEG database
Continuous intracranial long-term EEG recordings from

eight patients with pharmacoresistant focal epilepsy were
used in this study (Table 1). These were recorded during
presurgical epilepsy monitoring at the Epilepsy Center of
the University Hospital Freiburg, Germany. The retrospec-
tive evaluation of the data received prior approval from the
ethics committee of the University of Freiburg Medical
Faculty. Informed consent was obtained from each patient.

A B

Figure 1.

Concept of the combination of prediction methods using a logical ‘‘AND’’ (A) and ‘‘OR’’ (B) for given alarms of two prediction meth-

ods (Meth. 1, 2). For the ‘‘AND’’ combination, an alarm of one of the methods is followed by a combination window (CW). Only if the

other method triggers an alarm during this time interval, an alarm of the combination is raised. For the ‘‘OR’’ combination, each single

alarm triggers an alarm of the combination. These alarms are followed by the intervention time (IT) and the seizure occurrence period

(SOP). During the period of IT + SOP after an alarm, no further alarms are triggered.
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EEG data were recorded using a Neurofile NT digital
video EEG system (IT-Med, Usingen, Germany) with
sampling rates of 256, 512, or 1024 Hz. Recordings were
performed using subdural grid and strip electrodes with steel
contacts of 2.3 mm diameter and/or depth electrodes with a
contact diameter of 1 mm and a length of 5 mm (Ad-Tech�,
Racine, WI, U.S.A.). The data were high-pass filtered at
0.5 Hz, low-pass filtered for anti-aliasing using a 97 Hz €
15% ()3 dB) filter, and digitized with a 16 bit analog-to-

digital converter. The EEG channels were referenced to the
channel displaying lowest epileptic activity. A 50-Hz notch-
filter was used to eliminate possible line noise. All features
were calculated using sliding windows of fixed duration in
time. Therefore, the number of data points varied between
patients dependent on the sampling rates. For details, please
refer to the Supporting Information.

For each patient, three electrode channels inside and three
electrode channels outside the epileptic focal area were
selected prior to any analysis by a certified epileptologist
(ASB). Criteria for the selection were initial seizure activity
for the focal channels, no or late involvement in ictal activ-
ity for the nonfocal channels, and good recording quality
based on visual inspection and analysis performed during
presurgical identification of the seizure onset zone. From
these six channels, 15 bivariate features for the mean phase
coherence and six univariate features for the SIM were cal-
culated.

In total, 1,456 h of continuous recordings were analyzed
in this study, varying between 148 and 241 h per patient.
During these recordings, 153 seizures occurred, varying

between 13 and 26 per patient. All seizures analyzed
occurred spontaneously, but antiepileptic medication was
reduced for the majority of patients during the recording
period. The first part of the data of each patient was used for
feature selection as described in the previous section. The
optimization of the combinations based on the selected fea-
tures was investigated afterwards on the remaining data,
which on average for all patients included 13.6 seizures,
ranging from 9–23, and a recording duration of 129 h, rang-
ing from 91–205 h.

Results

Localization of preselected EEG channels
The localizations of the electrode channels of the pres-

elected features are listed in Table 2. For the MPC, two
focal–focal, two extrafocal–extrafocal, and four focal–
extrafocal channel combinations showed best prediction
performance. For the SIM, features derived from two focal
and six extrafocal channels exhibited best predictive power.
For two of the eight patients the electrode used for the SIM
is used also for the MPC. With these preselected features,
both individual methods and their combinations were
analyzed based on the second part of the data.

Exemplary effects of combinations
Characteristic effects of combinations based on two fea-

tures are shown in Fig. 2A,B for exemplary recording peri-
ods of patient 6. Optimal thresholds for the preselected
features of the MPC and the SIM were determined such that

Table 1. Patient and EEG data characteristics

Pat. no. Age Sex Seizure type(s)

Seizure

origin Electrodes Outcome

Recording

length (h)

No of

seizures

Feature selection

Length (h) No. seizures

01 28 M SP; CP NC g; s Ib 204 25 36 5

02 50 M SP; CP; GTC H g; s; d Ib 241 14 36 3

03 31 F SP; CP; GTC NC d; s Ia 176 13 86 3

04 18 M SP; CP; GTC NC g; s Ia 148 19 36 10

05 11 M SP; CP; GTC H d; s Ia 187 26 91 3

06 42 F SP NC g Ic 159 17 36 5

07 35 M SP; CP NC + H d; s No surgery 179 17 70 3

08 21 M SP; CP NC + H d; s Ia 162 22 36 12

Ø 182.0 19.1 53.3 5.5

Seizure types: SP, simple partial; CP, complex partial; and GTC, generalized tonic–clonic. Seizure origin: NC, neocortical; and H, hippocampal. Intracranial
electrodes: g, grid; s, strip; and d, depth. Outcome: according to a modified Engel classification (Engel & Rasmussen, 1993).

Table 2. Localization of electrode channels of the preselected features

Patient 1 2 3 4 5 6 7 8

MPC f/e e/e f/e f/e f/f e/e f/f f/e

SIM e e e f e e f e

For the bivariate mean phase coherence (MPC), these can either be focal/focal (f/f), focal/extrafocal (f/e) or extrafocal/extrafocal (e/e) channel combinations; for
the univariate dynamic similarity index (SIM), either focal (f) or extrafocal (e) electrode channels exist.
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the combinations achieve their best sensitivity given the
predefined FPRmax of 0.15 false predictions per hour. For
the ‘‘AND’’ combination (Fig. 2A) and a combination win-
dow of 30 min, several alarms of the individual methods
were false alarms. Because they were not followed by an

alarm of the other method during the combination window,
the ‘‘AND’’ combination reduces the number of false alarms
considerably. By the ‘‘OR’’ combination, the predictions of
both methods are complemented (Fig. 2B). Whereas one
seizure was predicted correctly by the MPC and another by

A

B

Figure 2.

Effects of the ‘‘AND’’ (A) and ‘‘OR’’ (B) combination on predictions (here: selected recording periods from patient 6). The time cour-

ses of the individual features are shown in blue for the mean phase coherence (MPC) in the top plot, and for the dynamic similarity

index (SIM) in the middle plot. The thresholds (purple horizontal lines) for both methods were adapted such that the combinations

(bottom rows) achieve optimal results. Black lines indicate seizures. Alarms were triggered if the features fall below the thresholds:

green lines mark correct predictions, orange lines false ones, and blue-green vertical lines threshold crossings within IT + SOP follow-

ing another alarm, which are not considered in the analysis. The combination windows of the ‘‘AND’’ combination are indicated in

gray. The length of the combination window and the duration of the SOP was set to 30 min; FPRmax to 0.15 false predictions per hour.

IT was 10 min for the ‘‘AND’’ combination; 50 min for the ‘‘OR’’ combination. Note that for the ‘‘AND’’ combination, an alarm is trig-

gered only if an alarm of one method is followed by an alarm of the other within the combination window. For the ‘‘OR’’ combination,

each threshold crossing of either method results in an alarm. IT, intervention time; SOP, seizure occurrence period.
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the SIM, it is able to correctly predict two of four sei-
zures—while still maintaining FPRmax.

Performance of individual and combined prediction
methods

Observed prediction sensitivities are displayed together
with the sensitivities of the random predictor for all eight
patients in Fig. 3 (cf. Table 3 for optimal IT values). Based
on individual methods, two patients showed a significant
prediction performance for the MPC, with an average sensi-
tivity of 24.8%, and two patients for the SIM, with an aver-
age sensitivity of 24.2%. Given identical predefined
maximum false predictions rates, the ‘‘AND’’ combination
results in significant results for four patients for a combina-
tion window of 30 min, with an average sensitivity of
43.2%. The results can be considered significant for the
whole group if they exceed the sensitivity of the random

predictor for three or more patients (cf. Supporting Informa-
tion), which is the case for the ‘‘AND’’ combination. For the
‘‘OR’’ combination, significant results can be observed only
for two patients, with an average sensitivity of 35.2%.

Sensitivities achieved by the ‘‘AND’’ combination were
higher in all eight patients compared to the performance of
the individual methods. On average for all patients, the sen-
sitivity of the ‘‘AND’’ combination exceeds the sensitivity
of the random predictor. This corresponds to the observation
of higher or at least equal sensitivity of the ‘‘AND’’ combi-
nation in all patients compared to the random predictor.

In a further analysis, different seizure types (simple par-
tial, complex partial, and generalized tonic–clonic) were
analyzed with regard to possible differences in prediction
performance. For the eight patients studied here, in whom
the dominant seizure type was variable, no significant dif-
ferences were found.

Figure 3.

Results of the optimized combinations following a logical ‘‘AND’’ and ‘‘OR,’’ in comparison to the results of the individual methods

mean phase coherence (MPC) and dynamic similarity index (SIM). Seizure occurrence period (SOP) duration was set to 30 min,

FPRmax to 0.15 false alarms per hour, and the intervention time (IT) was optimized for each patient to a duration of between 10 and

60 min. For the ‘‘AND’’ combination, a combination window of 30 min was used. Significant sensitivity values that exceed the corre-

sponding sensitivities of the random predictor (light gray in the background) in a patient are marked by an asterisk. Sensitivity in this

group averages 24.8% for the MPC, and 24.2% for the SIM. For the ‘‘AND’’ combination, average sensitivities of 43.2%, and 35.2% for

the ‘‘OR’’ combination are observed.

Epilepsia ILAE

Table 3. Patient individual optimal intervention times

Patient 1 2 3 4 5 6 7 8

MPC 10 40 10 10 20 50 40 40

SIM 10 50 50 20 10 10 40 10

‘‘AND’’ Comb. 40 30 20 40 10 10 50 30

‘‘OR’’ Comb. 10 40 40 20 10 50 40 40

Intervention time (IT) in minutes for the mean phase coherence (MPC), the dynamic similarity index (SIM), and the ‘‘AND’’ and ‘‘OR’’ combination for a seizure
occurrence period (SOP) of 30 min, a combination window of 30 min, and a maximum false prediction rate of 0.15 false predictions per hour.
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Dependencies on SOP and FPRmax

To assess the robustness of the results obtained, predic-
tion performances of both individual prediction methods
and their combinations were analyzed for several predefined
SOPs and false prediction rates. For a fixed FPRmax of 0.15
false predictions per hour, increasing durations of SOP run
parallel with an increase in prediction sensitivity (Fig. 4A).
With SOPs of 10–60 min, the improvements of the ‘‘AND’’
combinations are stable; the increase in sensitivity ranges
on average for all patients from a factor 1.65 (for an SOP of
40 min) to 2.2 (for an SOP of 10 min) in comparison to the
sensitivity of the best individual method. Similarly, sensitiv-
ities are improved by the ‘‘OR’’ combinations ranging from
a factor of 1.35 (for an SOP of 50 min) to 1.52 (for an SOP
of 60 min).

When FPRmax is varied for a fixed SOP of 30 min
(Fig. 4B), sensitivities are improved by the ‘‘AND’’ combi-
nation by a factor of 1.62 (for an FPRmax of 0.2/h) to 1.74
(for an FPRmax of 0.15/h). For the ‘‘OR’’ combination, the
sensitivities increase by a factor of 1.25 (for an FPRmax of
0.1/h) to 1.42 (for an FPRmax of 0.15/h). The sensitivities of
the combined methods for FPRmax = 0.1 false predictions
per hour lie in the range of the sensitivities of the individual
prediction methods observed for FPRmax of 0.2 false predic-
tions per hour.

The number of patients with significant prediction
performances was stable when SOP and FPRmax were
varied. Again, only for the ‘‘AND’’ combination sensi-
tivities on average were higher than those of the random
predictor.

Discussion

Precursors of imminent epileptic seizures have been
reported in a number of studies using a variety of features
derived from EEG recordings. Whereas some of these have
a statistically significant predictive value, their performance
currently remains insufficient for clinical applications
(Ebersole, 2005; Mormann et al., 2006; Schelter et al.,
2007). This is due to an unfavorable relationship between
achieved sensitivity and specificity.

This study for the first time systematically investigates
the possibility of combining different seizure prediction
algorithms to improve prediction performances. The
analysis is based on a database with continuous long-term
recordings of intracranial EEG, lasting on average 182 h
and including on average 19.1 seizures per patient. The
algorithms analyzed were found to reflect different aspects
of brain dynamics corresponding to different points in time
when alarms are triggered. We could show that sensitivity

A B

Figure 4.

Average prediction sensitivities for all patients based on the mean phase coherence (MPC), the dynamic similarity index (SIM), and the

‘‘AND’’ and the ‘‘OR’’ combination together with average sensitivities of the random predictor, depending on the duration of the sei-

zure occurrence period (SOP) and on the maximum false prediction rate FPRmax. For the ‘‘AND’’ combination, a combination win-

dow of 30 min was used. (A) Increase in sensitivities with duration of SOP for a fixed FPRmax of 0.15 false predictions per hour. (B)

Increase in sensitivities with maximum false prediction rate FPRmax for a fixed SOP of 30 min. For each patient and prediction method,

intervention time (IT) was optimized to a value between 10 and 60 min. The superiority of both ‘‘AND’’ and ‘‘OR’’ combinations is

stable over the parameter range assessed. For the ‘‘AND’’ combination, observed sensitivities exceed the sensitivity of the random

predictor consistently for the average of all patients.
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can be increased for the combination of the univariate SIM
and the bivariate MPC, given a fixed maximum false
prediction rate.

Using the logical ‘‘AND’’ combination, for which both
methods must trigger individual alarms during a specified
time window to trigger an alarm of the combined system,
the number of patients showing significant prediction per-
formance doubled from two to four of eight patients for
an SOP of 30 min and an FPRmax of 0.15 false predictions
per hour. In comparison to the random predictor, this rep-
resents a significant prediction performance for the whole
group of patients for the ‘‘AND’’ combination. Moreover,
the average sensitivity was increased by a factor of 1.79.
For the patients analyzed here, the ‘‘OR’’ combination, for
which each single alarm of one method leads to an alarm
of the combined system, had a smaller effect but also
increased sensitivities by a factor of 1.46 on average.
Because the performance increase of the ‘‘AND’’ combi-
nation is higher than that of the ‘‘OR’’ combination, it can
be concluded that the correct alarms of the individual
methods investigated here are more highly correlated than
the false alarms. We could further show that these
improvements were robust over a range of reasonable
SOPs and at various predefined maximum false prediction
rates. Depending on clinical needs, it is thus not only pos-
sible to increase sensitivity. The focus of improvement
can also be laid on reducing the rate of false predictions
in comparison to individual methods.

These findings demonstrate that different aspects of
changes in preictal dynamics can be combined in an advan-
tageous manner, and characteristics of various methods can
be joined. Using the Boolean operations introduced here,
two scenarios are conceivable: if, on the one hand, the
applied individual prediction methods are known to produce
independently occurring false alarms, the ‘‘AND’’ combina-
tion is a promising approach to reduce the number of false
alarms considerably. On the other hand, if prediction meth-
ods are available that complement each other with respect to
correct predictions, the ‘‘OR’’ combination may offer
advantages by joining the predictive power of the individual
methods. With regard to future clinical applications, both
approaches can be advantageous, depending on the severity
of side effects of the interventions.

The optimized combination of prediction methods intro-
duced in this study allows an adaptation of the combined
methods to these requirements. For intervention systems
with minor side effects like pharmaceutical or electrical
intervention at the focus site, it can be optimized for the
desired high sensitivities, since false alarms are of less
importance in these scenarios. If alarms are issued to warn
the patient, however, optimal specificity must be achieved,
such that the patient is not impaired by many false predic-
tions. By applying the paradigm of optimized combination,
either can be accomplished. For the future, based on the
results presented, investigations of more complex strategies

like weighted combinations instead of the Boolean ‘‘AND’’
or ‘‘OR’’ may be promising and could contribute to a further
increase in prediction sensitivity.

In addition, the systematic analysis of different prediction
methods could serve for the rational selection of methods
that provide complementary aspects of preictal EEG
dynamics. As a second step, it is conceivable to tune predic-
tion methods to focus on a certain aspect of brain dynamics
with high sensitivities not covered by others.

The proof of principle given by this study opens up a win-
dow for new ways to combine prediction methods that were
used individually during the last decade (Mormann et al.,
2007). Given the markedly improved sensitivities at fixed
maximum false prediction rates, this represents a relevant
step toward applications in clinical settings.
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