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1. MAIN FINDINGS OF THIS WORK

Noise in biological systems could be expected to influence many processes in the cell,

particularly the ones where a defined output has to be produced upon certain stimulus, as in

signal transduction (see main text). Using chemotaxis in Escherichia coli as a model system,

we combined experimental analysis with mathematical modelling to analyse the robustness of

the signal transduction pathway to a stochastic intercellular variation in protein levels. The

design of the chemotaxis pathway (Fig. 1c) and the regulation of expression of chemotaxis

genes (Fig. S1a) are well understood. We used fusions to yellow and cyan fluorescent proteins

(YFP and CFP) as translational reporters to measure variation in the levels of chemotaxis

proteins in a cell population (Fig. 2). We observed a strong co-variation in the single-cell

levels and only a weak uncorrelated variation (Fig. S1b, Fig. 2b). Moreover, the variation

decreased at a higher rate of transcription. Both findings are consistent with an assumption

that such variation, or gene expression noise, is mainly determined by transcription [1].

Using mathematical analysis, we found that the experimentally established design of the

chemotaxis pathway (Fig. 1c) is robust to concerted variation in protein levels and predicted

that the variation in the output of the pathway, the level of phosphorylated CheY (CheY-P),

should be much smaller than the variation in the levels of chemotaxis proteins (Fig. S1c).

Such robustness would enable most individuals in the population to be fully chemotactic -

that is to have the level of CheY-P in the working range of flagellar motor. This prediction

was confirmed experimentally by showing that the cells remain chemotactic and keep CheY-

P concentration in the right range upon an up to 6.6-fold overexpression of all chemotaxis

proteins. We speculate that the robustness to gene expression noise provides an advantage

to a population and is thus under evolutionary selection.

2. DESCRIPTION OF THE MATHEMATICAL MODELLING

2.1. Brief Introduction to Bacterial Chemotaxis

Signal transduction networks have to transmit information in a robust way but toler-

ate only small variations of the output to a given input signal. One of the best-studied

simple signalling systems is bacterial chemotaxis, which allows bacteria to navigate in gra-

dients of chemical attractants or repellents. Here, information about ambient changes in

chemo-ligand are transmitted from receptors on the cell surface to the flagellar motors by

a stimulation-dependent phosphorylation of a diffusible response regulator protein CheY.

Most biochemical rate constants and average concentrations of chemotaxis proteins under

standard conditions have been determined [2, 3], making chemotaxis an excellent system for

a quantitative analysis. Another advantage of the chemotaxis pathway is its relative isola-

tion from other cellular processes, such as metabolism, which allows treating the pathway as

an independent module [4]. Chemotaxis pathways can sense relative changes of attractant

concentrations as small as two percent over a dynamic concentration range of five orders of

magnitude [5]. Previous quantitative analysis showed that such a large dynamic range can

be explained by a combination of allosteric signal amplification by receptor clustering [6] and
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a precise adaptation mechanism (c.f Refs. [7–10]). Precise adaptation is the ability to return

to the same level of pathway activity under conditions of continuous stimulation. Failure of

this systems property would lead to permanently swimming or tumbling behaviour and thus

to the loss of the chemotactic ability. In E. coli, sudden addition of attractant leads to an in-

stantaneous decline in receptor activity followed by a slow adaption process. There is strong

evidence that precise adaptation is a direct consequence of a reversible methylation process

of the receptors sensing chemo-ligands. In this process a higher level of methylation increases

the probability of a receptor to switch to an active state [5]. Almost perfect adaption results

from a constantly working methyltransferase (CheR) balanced by a methylesterase (CheB),

which works only on active receptors [11]. Active receptors enhance autophosphorylation

activity of CheA, which in turn phosphorylates CheY.

2.2. Two-State Model of Bacterial Chemotaxis

The mathematical description used in this work to simulate the dynamics of a chemotactic

signalling system relies on following assumptions:

1. The numbers of protein copies are sufficiently large, such that stochastic effects on the

protein level can be neglected

2. Each stable receptor complex includes one kinase protein, CheA.

3. A receptor complex can exist only in two functional states, active or inactive (two-state

model) [7]

4. The rate of CheA phosphorylation is assumed to be proportional to the average number

of active receptor complexes in the cell

5. The protein-protein interactions can be described by Michaelis-Menten kinetics

The probability, pm(L), of receptor in methylation state m ∈ {0, 1, 2, 3, 4} to be active in an

ambient attractant concentration L is given by

pm(L) = Vm

(
1− LHm

LHm + KHm
m

)
(S1)

The response amplitudes, Vm, Hill coefficients, Hm, and the values at half maximum

response, Km, used throughout this work are taken from Ref. [5] and are listed in Table S2.

We emphasise that none of the results derived in this work depends on the precise values

of these coefficients.

The time-evolution of the different phosphorylation and methylation states for the

topologies Fig. 1 follows along the lines of Rao et al (c.f. Ref. [12]) and are described by

the following equations:
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Sites methylated Km[mM ] Hm Vm

0 27 · 10−4 1.2 0.0
1 20 · 10−3 1.2 0.25
2 150 · 10−3 1.2 0.5
3 150 · 10−2 1.2 0.75
4 60 1.2 1

TABLE S1: Parameters for response of receptors in different methylation states to attractant
(α-methyl-DL-aspartate).

Topology Fig. 1a:

∂tTm = kRR
Tm−1

KR + T T
+ kB B

TA
m+1

KB + TA

(S2)

− kRR
Tm

KR + T T
− kB B

TA
m

KB + TA

∂tAp = kA

(
AT − Ap

)
TA − kY Ap

(
Y T − Y p

)
(S3)

∂tY p = kY Ap
(
Y T − Y p

)− γY Y p (S4)

Topology Fig. 1b:

∂tTm = kRR
Tm−1

KR + T T
+ kB B

TA
m+1

KB + TA

(S5)

− kRR
Tm

KR + T T
− kB B

TA
m

KB + TA

∂tAp = kA

(
AT − Ap

)
TA − kY Ap

(
Y T − Y p

)
(S6)

∂tY p = kY Ap
(
Y T − Y p

)− kZY p Z − γY Y p (S7)

Topology Fig. 1c:

∂tTm = kRR
Tm−1

KR + T T
+ kB Bp

TA
m+1

KB + TA

(S8)

− kRR
Tm

KR + T T
− kB Bp

TA
m

KB + TA

∂tAp = kA

(
AT − Ap

)
TA − kY Ap

(
Y T − Y p

)
(S9)

− k′BAp
(
BT −Bp

)

∂tY p = kY Ap
(
Y T − Y p

)− kZY p Z − γY Y p (S10)

∂tBp = k′BAp
(
BT −Bp

)− γBBp (S11)
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Topology Fig. 1d:

∂tTm = kRR
Tm−1

KR + T T
+ kB Bp

TA
m+1

KB + TA

(S12)

− kRR
Tm

KR + T T
− kB Bp

TA
m

KB + TA

∂tAp = kA

(
AT − Ap

)
TA − kY Ap

(
Y T − Y p

)
(S13)

− k′BAp
(
BT −Bp

)

∂tY p = kY Ap
(
Y T − Y p

)− kZY p Z∗ − γY Y p (S14)

∂tBp = k′BAp
(
BT −Bp

)− γBBp (S15)

∂tZ
∗ = k∗ZY p (ZT − Z∗)− γ∗ZZ∗ (S16)

The concentration of receptor complexes with m residues methylated are denoted by Tm and

TA =
∑

m TA
m is the concentration of active receptors, with TA

m = pm(L) Tm. In topology

Fig. 1d, the rate of activation of CheZ by CheY-P is denoted by k∗Z and the corresponding

decay rate by γ∗Z . There is indirect experimental evidence [13] for an active form of the

CheY phosphatase (Z∗). All other protein concentrations are denoted as in the main text.

One should note that the above defined equations show only precise adaption if the highest

methylation state is not significantly populated. Latter restriction can be lifted if one allows

the methyltransferase to work exclusively on inactive receptors [11]. It has been shown

for E. coli in vitro [14] and in vivo [5] that changing an attractant occupancy of just a few

receptors out of thousands elicits a much larger change in kinase activity. There is increasing

evidence that this signal amplification (gain) in bacterial chemotaxis can be explained by

long-range allosteric interactions between receptors localised at the cell poles [15–20]. To

account for the receptor interactions in a simple way, we assume that kinase activity depends

linear on the concentration of all active receptors. Thus, the first term in Eq. (S9) does

not reflect a bimolecular reaction but accounts for the strong non-linear relation between

receptor occupancy with ligand and kinase activity in a mean field approximation [20] and

also accounts for the experimental finding that a two-fold increase in aspartate or serine

receptors at fixed methylation levels results in a four-fold increase in kinase activity [17].

The average concentrations of the chemotaxis proteins are taken from Ref. [2] for

the strain RP437 assuming a cell volume of 1.4 fl: [CheA]= 5.3 µM, [CheY]= 9.7 µM,

[CheB]= 0.28 µM, [CheR]= 0.16 µM, [CheZ]= 3.8 µM. The concentration of the receptor

complexes is set equal to [CheA].

2.3. Determination of Kinetic Constants used in Simulations

The kinetic rates and Michaelis-Menten constants of the methylation process are deter-

mined such that the maximum number of bacteria in a population show accurate chemotactic

response under physiological intercellular variations in protein concentrations (Fig. 2). The

protein concentrations for the individuals in a population are generated by the random
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process, Eq. (S17),

xi = 〈xi〉wt

(
λrex + ν

√
λrex ξ

(2)
i

)
(S17)

≈ 〈xi〉wt

(
λrex + ν

√
λ ξ

(2)
i

)
, (S18)

with xi the protein concentrations of the i-th chemotaxis protein and 〈xi〉wt the corre-

sponding average concentration of xi for the strain RP437, as given before. The factor of

overexpression is denoted by λ. The co-variations follow a log-normal distribution given by

rex = Nr exp[α ξ(1) ln 10] with Nr chosen such that 〈rex〉 = 1, and ξ(1) and ξ(2) are normally

distributed random variables with mean zero and variance one. The values ν = 0.20,

α = 0.20 reproduce gene expression noise measured in Fig. 2a and Fig. 2b, respectively

(see also Fig. S2). The decrease of uncorrelated variations with ηin ∼ λ−1/2 assumes that

protein syntheses follows a Poisson process and proteins are expressed from polycistronic

mRNA (see Ref. [1]). This is confirmed by co-expression of CheY-YFP and CheZ-CFP as

a single transcript from a plasmid (pVS88) at different levels of IPTG induction (Table S2

and Fig. S3). The population size used in the simulations are 70 individuals for the

determination of the kinetic constants and 104 individuals for quantifying the fraction of

fully chemotactic bacteria (Fig. 3 and Fig. 4).

λ ηex ηin ηtheo
in = ηwt

in n−1/2

1 0.44 0.20 0.20
2.52 0.27 0.15 0.13
14.1 0.21 0.067 0.053

TABLE S2: Gene expression noise of CheY-YFP and CheZ-CFP expression from a single IPTG-
inducible promoter at 0µM, 5µM, and 10µM IPTG. Mean expressions relative to the wild type are
denoted by λ. The correlated and uncorrelated contributions of gene expression noise, ηex and ηin,
decline for higher expression levels and latter agrees with the theoretical predicted values from the
model Eq. (S18), ηtheo

in = νλ−1/2, with ν = ηwt
in = 0.20 the uncorrelated part of gene expression

noise for the wild type.

The following rate constants are estimated from various measurements found in the

literature [3]. The CheA autophosphorylation rate mediated by active receptors is set to

kA = 50µM−1s−1. The CheY phosphorylation by phosphotransfer from CheA to CheY

has the value kY = 100µM−1s−1. The dephosphorylation rate for CheY are given by

kZ = 30/[CheZ]s−1 and γY = 0.1 for the topologies Fig. 1b, 1c, 1d and γY = 30.1 for

topology Fig. 1a. For the topologies Fig. 1c, 1d the optimal value for [CheB-P] can

be determined from an optimisation procedure for highest chemotactic performance as

described below, but the outcome is essentially that CheB-P takes the smallest possible

value (see section 2.6.4). We therefore adjust the rate of CheB phosphorylation such

that [CheB-P] is about one fourth of the total concentration of CheB. This essentially

results in a four-fold higher demethylation activity. Furthermore, for CheB activation we

6



set k′B = 3µM−1s−1 with corresponding auto-dephosphorylation rate γB = 1s−1. For the

active form CheZ∗ in topology Fig. 1d a four-fold higher phosphatase activity is assumed

in comparison to CheZ in topologies Fig. 1a-c.

The rate constants for the methylation process and the CheY-CheZ feedback of topol-

ogy Fig. 1d are determined by an optimisation procedure [21] towards highest chemotactic

performance with parameters given above to result in an adaptation time of 100s after

sudden addition of attractant (35µM α-methyl-DL-aspartate) and an adaptation time of

25s after removal. A further condition is a fixed adapted concentration of phosphorylated

CheY which is set to 3.2µM (2.8µM for Fig. 3b) [22]. We determined the optimal rate and

Michaelis-Menten constants by minimising the quadratic functional

E[k,K] = min
1

N

N∑
i=1




NL∑

l=1

(
Y p

(i)
l − Y p∗

)2

NLσY
2 +

(
τ

(i)
1 − τ ∗1

)2

2σ1
2

+

(
τ

(i)
2 − τ ∗2

)2

2σ2
2


 (S19)

with τ ∗1 = 100s, τ ∗2 = 25s, and Y p∗ = 1/3 Y T . Because precise adaption is the outstanding

feature of the chemotaxis pathway it is reasonable to assume that a higher selective pressure

is given for the precise regulation of CheY-P than for adaptation times. In the simulations

we use the standard deviations, σY = 1/6 Y p∗, σ1 = 1/2 τ ∗1 and σ2 = 1/2 τ ∗1 but for the

general conditions that σY /Y p is significantly smaller than σ1/τ
∗
1 and σ2/τ

∗
2 we arrive

essentially at the same results as for the specific standard deviations above (data not

shown). The sum runs over N individuals whose protein concentration are generated from

the random process, Eq. (S17), and NL = 3 denotes the number of stepwise increments of

attractant to show maximum response.

The result of the optimisation procedure for the different topologies in Fig. 1 is given in

Table S3. For the topology Fig. 1d the kinetic constants for the CheY-CheZ feedback loop

has been optimised by the same procedure and are given in table S4.

Topology kR [µM−1s−1] KR [µM ] kB [µM−1s−1] KB [µM ]
Fig. 1a 0.5 0.062 16 16
Fig. 1b 1.0 0.043 16 10.1
Fig. 1c 0.39 0.099 6.3 2.5
Fig. 1d 0.39 0.099 6.3 2.5

TABLE S3: Kinetic constants of the methylation process for the different topologies Fig. 1.

Topology k∗Z [µM−1s−1] kZ [µM−1s−1] γZ [s−1]
Fig. 1d 1.33 3.64 · 102 2.20 · 102

TABLE S4: Kinetic constants of the CheY-CheZ feedback loop in Fig. 1d.

7



We emphasise that the outcome of CheR working at saturation is direct consequence of

the model assumption that prefect adaptation is due to an integral feedback loop at the

methylation level. The higher chemotactic efficiency resulting from compensation for co-

varying protein levels then drives the Michaelis-Menten constant for the methyltransferase

to small values. But one should note that the experimentally found value of Kex
R = 10µM

[3] is in accord with the optimisation result of saturation behaviour for CheR as the receptor

concentration within the poles can be estimated to be ∼ 200µM and is therefore significantly

larger than Kex
R .

2.4. Robustness against Variations in Transcriptional Activity

In this section we derive the necessary conditions for a chemotaxis pathway to be robust

against variations in transcriptional activity. Transcriptional noise leads to co-variation

of expression-levels within the same operon, as shown in Fig. 2b, Figs. S2 and S3, and

Table S2. The extend of these co-variations can be up to ten-fold of the wild type

gene expression [2]. Bacterial populations showing chemotactic response among all their

individuals are selective advantageous to bacteria which lose their chemotactic ability under

such variations in gene expression. Thus, the topology of the chemotaxis pathway should

have evolved in such a way that the steady state concentration of the response regulator

protein CheY-P is invariant under a λ-fold increase in transcriptional activity.

The time evolution of a spatial homogeneous biochemical network can be described by a

set of ordinary differential equations. Let {y1(t), . . . , yN(t)} be the concentrations of the N

different states of the proteins involved in the pathway. Summation over all different states

of the protein with index k results in the total concentration xT
k =

∑
{yi}k

yi. Since the

dynamics of the chemotaxis pathway ranges on time scales from 10−2 seconds to minutes,

and the turnover time for proteins is significantly larger in bacteria, we can assume the total

concentration of the chemotactic proteins to be constant, xT
k ≈ const, for the time scales a

cell needs to climb a gradient in ligand concentration.

Thus, the differential equations describing the dynamics of the chemotaxis pathways shown

in Fig. 1 have the functional form

∂tyi(t) = Fi(y(t)|xT ) (S20)

The steady state solution Fi(y(t)|xT ) = 0 is invariant under a λ-fold increase of transcrip-

tional activity xT → λxT if it satisfies the homogeneity condition

Fi(y(t)|λxT ) = λµiFi(y(t)|xT ), (S21)

with µi ∈ {1, 2, 3 . . .}. In the following we identify the topological features of a chemotaxis

pathway necessary for CheY-P to be invariant against variations in transcriptional activity.

We first investigate the Barkai-Leibler system shown in Fig 1a. To illustrate the point we

assume that each receptor has only one methylation site. Methylated receptors are active

with probability p(L), with L the ambient ligand concentration. Non-methylated receptors
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remain inactive with probability one. The set of differential equations for this system is

given by

∂tTM = kRR
T T − TM

KR + T T − TM

− kBB
TA

KB + TA

(S22)

≈ kRR− kBBT TA

KB + TA

(S23)

∂tAp = kATA

(
AT − Ap

)− kY Ap
(
Y T − Y p

)
(S24)

∂tY p = kY Ap
(
Y T − Y p

)− γY Y p . (S25)

The approximation resulting in Eq. (S23) is valid for T T − TM À KR, i.e. for R working at

saturation. Also, we assume that only active receptors can be demethylated. The dephos-

phorylation rate of CheY-P is given by γY .

The steady state concentrations of the active components of this system are:

TA = KB
kRR

kBBT − kRR
(S26)

Ap =
kATAAT

kATA + kY (Y T − Y p )
≈ kATA

kY

· AT

Y T
(S27)

Y p =
kY ApY T

kY Ap + γY

(S28)

Approximations made in Eq. (S27) are valid for Y T À Y p and kY Y T À kATA. Latter is

equivalent to AT À Ap , which means that the phosphotransfer from CheA-P to CheY is

significantly faster than the autophosphorylation of CheA. Performing the transformation

xT → λxT on Eqs. (S26)-(S27) shows that the steady state concentration of the active form

of the receptor TA and of CheA-P remain unchanged, since we can eliminate λ in these

equations. But in Eq.(S28), λ cannot be eliminated. Thus the steady state concentration of

CheY-P increases with λ. This means that the Barkai-Leibler model shown in Fig.1a is not

robust against variations in transcriptional activity.

For topologies Fig. 1b-1d there is a phosphatase Z = [CheZ] that dephosphorylates activated

CheY. For these topologies the dephosphorylation term of CheY-P is given by kZZT Y p .

Therefore Eq.(S25) can be rewritten as:

∂tY p = kY Ap
(
Y T − Y p

)− kZZT Y p (S29)

This changes the steady state equation of CheY-P to:

Y p =
kY ApY T

kY Ap + kZZT
≈ kY Ap

kZ

· Y T

ZT
(S30)

The approximation made here is valid for kZZT À kY Ap, which is equivalent to Y T À Y p .

Now the transformation xT → λxT leaves the steady state of CheY-P unchanged. So

in order to be robust against variations in transcriptional activity, CheY-P has to have a

phosphatase.
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For topologies Fig. 1c, 1d the methylesterase CheB is only active if it is phosphorylated by

Ap. Thus for these topologies we get an additional differential equation for Bp = [CheB-P]

given by

∂tBp = k′B Ap
(
BT −Bp

)− γBBp , (S31)

with k′B the rate of phosphotransfer from CheA-P to CheB and γB is the dephosphorylation

rate of Bp. Technically the term k′B Ap
(
BT −Bp

)
has to be considered also in Eq.(S24).

But since kY Y T À k′B BT , this term can be neglected. Then the steady state of this equation

reads:

Bp =
k′BAp BT

k′BAp + γB

. (S32)

Under the transformation xT → λxT the steady state value for Bp increases by a factor λ.

For the receptor activity to be invariant against transcriptional noise, the scaling of CheB-P

with λ is a necessary condition, as can be seen from Eq. (S26) with CheB-P substituted for

CheB.

Clearly, if CheB-P would have a phosphatase, its steady state would not scale with λ. This

in turn would destroy the invariance of TA. As a result, neither CheA-P nor CheY-P would

be invariant under λ-fold increase in protein levels.

Also, an auto-methylation process of the receptors is no alternative to the methyltrans-

ferase CheR. Assuming auto-methylation as the main methylation process, we would have

to substitute the term kRR in Eq. (S23) by km(T T −TM), with km the automethylation rate.

But then the homogeneity condition, Eq. (S21), would be violated.

Summarising we can say that in order for a topology to be robust against variations in

transcriptional activity, the following conditions have to be fulfilled:

• a methyltransferase CheR has to exist and work at saturation,

• the dephosphorylation of CheY-P has to be taken over by a phosphatase CheZ, see

Eq.(S30),

• CheB-P must not have a phosphatase

• CheA-P and CheY-P have to be significantly smaller than their total concentrations,

i.e. Ap ¿ AT and Y p ¿ Y T .

The consequences of the violation of these conditions are illustrated in Fig. S4. So far

we have shown that the steady states of topologies Fig. 1b-1d are robust against variations

in transcriptional activity. But what happens to the dynamics of a system under this

transformation? Since the differential Eqs.(S23), (S24), (S29) and (S31) are linear in the

concentrations {AT , BT , R, Y T} under the assumptions AT À Ap , Y T À Y p , the entire

system Fi(y(t)|xT ) is a linear function with respect to xT and we can write:

∂tyi = Fi(y(t)|λxT ) = λFi(y(t)|xT ) = λ∂t′yi (S33)
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This means, a λ-fold increase in transcriptional activity results in a rescaling of time: t′ = λt.

Now the dynamics of both systems are identical in different time-frames. Temperature

changes, e.g., alter kinetic rate constants and result to first order also in a rescaling of time.

Consequently the steady state values of the pathway are also invariant under moderate

variations in the ambient temperature.

2.5. Alternative Feedback Loops

Within our modelling approach we also investigated an effect of several alternative hypo-

thetical feedback loops (Fig. S5) on the chemotactic efficiency. The results of our simulations

(not shown) support the analytical finding that: (i) a methyltransferase (CheR) has to exist,

because auto-methylation of inactive receptors violates robustness against concerted vari-

ations in expression levels, although it satisfies the conditions for precise adaptation [11],

(ii) a negative feedback loop, resulting from inactivation of CheR by phosphotransfer from

CheA, shows only about half the efficiency for noise compensation of a feedback via CheB

phosphorylation as a consequence of CheR working close to saturation and (iii) a negative

feedback from CheY-P to the kinase activity through binding to the receptor complexes

also violates robustness against co-variation in expression levels, which can only be repaired

if CheY-P would bind exclusively to active receptors. Although the CheY-CheZ feedback

loops in Fig. 1d and Fig. S5 lead effectively to a cooperative activity of CheZ with respect to

CheY-P dephosphorylation, only in Fig. 1d the invariance of CheY-P against overexpression

of CheY and CheZ is preserved.

2.6. Error Reduction Mechanisms

In this section we show how errors in the output signal arising from imperfection of

components or independent variations of protein levels can partially be compensated by

additional feedback loops and an optimal choice of kinetic parameters. In the following we

look at the differential equations of the topologies of E. coli and the Barkai-Leibler system

to show the difference in error reduction between topologies with and without additional

feedback.

The differential equations for the topology in Fig. 1c for the receptor methylation TM ,

the receptor protein Ap = [CheA-P], the messenger protein Y p = [CheY-P], and the

methylesterase Bp = [CheB-P] are given by

∂tTM = kRR− kBBp
TA

KB + TA

(S34)

∂tAp = kA

(
AT − Ap

)
TA − kY Ap

(
Y T − Y p

)

− k′BAp
(
BT −Bp

)
(S35)

∂tY p = kY Ap
(
Y T − Y p

)− kZY p Z, (S36)

∂tBp = k′BAp
(
BT −Bp

)− γBBp . (S37)
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In this topology, the demethylation of the receptor complex is performed only by the phos-

phorylated form of CheB. The phosphorylation of CheB results from phosphotransfer of

CheA-P, where CheA is part of the receptor complex. Thus the activated form of CheB

is a function of the activity of the receptor complex, and one has the functional form

Bp = Bp (Ap ). This functional dependence gives an additional feedback to the system

as shown in Fig. 1c.

For the Barkai-Leibler system, topology Fig.1a, the methylesterase of the receptor complex

is active only in unphosphorylated form and does therefore not depend on the phosphoryla-

tion level of CheA, see Eqs. (S23)-(S25).

From the steady state of Eq.(S35) we can define the functional:

f (Ap , Bp , Y p , TA) := kA

(
AT − Ap

)
TA − kY Ap

(
Y T − Y p

)

−k′BAp
(
BT −Bp

)
, (S38)

where the functions TA = TA(Bp , R), Y p = Y p (Ap , Y T , Z) and Bp = Bp (Ap ) are derived

from the steady states of Eqs.(S34),(S36) and (S37). We calculate the total differential of the

functional f to get the sensitivity of the kinase activity of CheA-P with respect to changes

in protein concentrations.

To get the dependence of Ap and R to linear order, one has to calculate the total differ-

ential of the functional in Eq.(S38)

df =
∂f

∂Ap
dAp +

∂f

∂R
dR = 0, (S39)

keeping all other protein concentrations constant. Solving this for dAp gives:

dAp = −
(

∂f

∂Ap

)−1
∂f

∂R
dR

= −
∂f

∂TA

∂TA

∂R

∂f
∂Ap

∣∣∣
TA,Y p ,Bp

+ ∂f
∂Y p

∂Y p
∂Ap

+

(
∂f

∂Bp

∣∣∣
TA

+ ∂f
∂TA

∂TA

∂Bp

)
∂Bp
∂Ap

dR

(S40)

The terms after the vertical lines indicate the concentrations kept constant for this derivative.

Using the following definitions:

α :=
∂f

∂Ap

∣∣∣∣
TA,Y p ,Bp

+
∂f

∂Y p

∂Y p

∂Ap
(S41)

β :=
∂f

∂Bp

∣∣∣∣
TA

+
∂f

∂TA

∂TA

∂Bp
, (S42)

we can simplify the representation of dAp to:

dAp = −
∂f

∂TA

∂TA

∂R

α + β ∂Bp
∂Ap

dR (S43)
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The term ∂Bp /∂Ap arises through the additional feedback and is zero for the Barkai-

Leibler topology. In section 2.6.1 we show that α is always negative for Y p < 0.75 Y T .

In section 2.6.2 we show that β is always negative for KB being sufficiently large. Since

∂Bp /∂Ap > 0, what can be seen from the steady state of Eq.(S37), the absolute value of

the denominator of Eq.(S43) is larger for the topology with additional feedback than for

the Barkai-Leibler model. This means, that fluctuations in the activity of CheA− P , that

result from fluctuations of CheR, are minimised by the additional feedback loop. The error

reduction by this additional feedback loop works better, the greater the absolute value

of β∂Bp /∂Ap . As shown in section 2.6.4, the effectiveness of the error correction of the

feedback increases with BT /Bp .

Equivalently, these calculations can be done for the other protein concentrations , resulting

in:

dAp = −
∂f

∂TA

∂TA

∂R

α + β ∂Bp
∂Ap

dR (S44)

dAp = −
∂f

∂Y T

∣∣
Y p

+ ∂f
∂Y p

∂Y p
∂Y T

α + β ∂Bp
∂Ap

dY T (S45)

dAp = −
∂f

∂Y p
∂Y p
∂Z

α + β ∂Bp
∂Ap

dZ (S46)

dAp = −
∂f

∂BT

∣∣
TA,Bp

+ β ∂Bp
∂BT

α + β ∂Bp
∂Ap

dBT (S47)

The numerator of Eqs. (S44-S46), are the same for the topology with additional feedback

(Fig. 1c, 1d) and without (Fig. 1a, 1b). Thus, deviations from the optimal value of

CheA-P arising through fluctuations of total proteins concentrations get attenuated by the

additional feedback loop via CheB phophorylation.

In Eq. (S47), the value of the numerator of the simpler systems (Fig. 1a, 1b),

∂f/∂TA · ∂TA/∂BT , is different to the numerator of the systems with additional feedback,

∂f/∂BT
∣∣
TA,Bp

+ β · ∂Bp/∂BT . In section 2.6.3 we show that variations in the total con-

centration of CheB are reduced by the additional feedback loop whenever the denominator

of Eqs. (S44-S47) increases by more than 1% compared to the denominator of the simpler

systems, Fig. 1a, 1b.
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2.6.1. Derivation of the Condition for α < 0

In this section we derive the condition that has to be fulfilled for α to be negative.

α =
∂f

∂Ap

∣∣∣∣
TA,Y p ,Bp

+
∂f

∂Y p

∂Y p

∂Ap

= −kA TA − kY (Y T − Y p )− k′B (BT −Bp ) + kY Y T kY ApkZZ

(kY Ap + kZZ)2 < 0

Since the phosphorylation of CheA is the rate limiting step in this reaction, kY Y T À kA TA,

we can neglect the term kA TA, [5]. Also, since kY Y T À k′B BT , we can neglect the term

k′B (BT −Bp ). Both simplification are conservative, i.e. they make the inequality even more

strict. We get as a condition for α < 0:

−kY (Y T − Y p ) + kY Y T kY ApkZZ

(kY Ap + kZZ)2 < 0

=⇒ kY ApkZZ

(kY Ap + kZZ)2 <
Y T − Y p

Y T

=⇒
kZZ

kY Ap(
1 + kZZ

kY Ap

)2 <
Y T − Y p

Y T
(S48)

There always exists a real number ω > −1 such that kZZ = (1 + ω)kY Ap . Thus inequality

(S48) can be written as:

1 + ω

(2 + ω)2 =
1 + ω

4 + 4ω + ω2
≤ 1 + ω

4 (1 + ω)
=

1

4
<

Y T − Y p

Y T

=⇒ Y T < 4Y T − 4Y p

=⇒ Y p <
3

4
Y T

Thus α is always negative for Y p < 0.75 Y T .

2.6.2. Derivation of the Condition for β < 0

From Eqs. (S44)-(S47) we can see that the error reduction mechanism of the chemotaxis

topology works more efficiently if the denominator increases in magnitude. Since ∂Bp /∂Ap

is positive and α is negative, β has to be smaller than zero for the additional feedback to

have a positive noise reduction effect. Here we derive the conditions for β being smaller

than zero:

β =
∂f

∂TA

∂TA

∂Bp
+

∂f

∂Bp

∣∣∣∣
T

= kA

(
AT − Ap

) ∂TA

∂Bp
+ k′B Ap < 0
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From the steady state of Eq.(S34) one can see that ∂TA

∂Bp
< 0, thus we have ∂TA

∂Bp
= −

∣∣∣ ∂TA

∂Bp

∣∣∣
and we get:

∣∣∣∣
∂TA

∂Bp

∣∣∣∣ =

kB

kR

KB

R(
kB

kR

Bp
R
− 1

)2 =

kB

kR

Bp
R(

kB

kR

Bp
R
− 1

)2

KB

Bp
>

k′B Ap

kA (AT − Ap )
(S49)

Defining ε := k′BAp /(kA(AT − Ap )) and γ := kBBp /kRR we get:

γ

(γ − 1)2

KB

Bp
> ε

⇐⇒ KB > ε Bp
(γ − 1)2

γ
(S50)

From our simulations we have ε ≈ 0.014, as well as (γ − 1)2/γ ≈ 7.5 and Bp ≈ 0.09 µM .

Thus for KB larger than 0.01 µM we can satisfy the condition β < 0.

2.6.3. Error reducing Effect on Variations of CheB

In order to show that the systems with additional feedback have an error reducing effect

also on variations in the total concentration of CheB, we have to show that the absolute value

of the term on the right hand side of Eq. (S47) is smaller for the systems with additional

feedback, (Fig. 1c, 1d), compared to the simpler systems, (Fig. 1a, 1b). Thus, we have to

show that:

∂f
∂BT

∣∣
TA,Bp

+ β ∂Bp
∂BT

α + β ∂Bp
∂Ap

=

∂f
∂BT

∣∣
TA,Bp

+ ∂f
∂TA

∂TA

∂Bp
∂Bp
∂BT + ∂f

∂Bp

∣∣∣
TA

∂Bp
∂BT

α + β ∂Bp
∂Ap

<

∂f
∂TA

∂TA

∂BT

α
(S51)

Note that the term ∂f/∂TA is equal for all topologies depicted in Fig. 1. One can easily see

that both sides of this inequality are greater than zero, that is why we do not have to take

the absolute value. This inequality can be rewritten as:

∂f
∂TA

∂TA

∂Bp
∂Bp
∂BT

α
+

(
∂f

∂BT

∣∣
TA,Bp

+ ∂f
∂Bp

∣∣∣
TA

∂Bp
∂BT

)
α−

(
∂f

∂TA

∂TA

∂Bp
∂Bp
∂BT

)
β ∂Bp

∂Ap

α
(
α + β ∂Bp

∂Ap

) <

∂f
∂TA

∂TA

∂BT

α

With ∂TA/∂Bp · ∂Bp/∂BT ≈ ∂TA/∂BT we get:
„

∂f

∂BT |TA,Bp
+ ∂f

∂Bp |TA

∂Bp

∂BT

«
α−
“

∂f
∂TA

∂TA
∂Bp

∂Bp

∂BT

”
β ∂Bp

∂Ap

α(α+β ∂Bp
∂Ap)

< 0

=⇒
(

∂f
∂BT

∣∣
TA,Bp

+ ∂f
∂Bp

∣∣∣
TA

∂Bp
∂BT

)
α−

(
∂f

∂TA

∂TA

∂Bp
∂Bp
∂BT

)
β ∂Bp

∂Ap
< 0
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From Eq.(S38), one can see that ∂f/∂Bp|TA
= − ∂f/∂BT

∣∣
TA,Bp

, and we get:

α

(
∂f

∂BT

∣∣
TA,Bp

+ ∂f
∂Bp

∣∣∣
TA

∂Bp
∂BT

)
= α ∂f

∂Bp

∣∣∣
TA

(
∂Bp
∂BT − 1

)

<
(

∂f
∂TA

∂TA

∂Bp
∂Bp
∂BT

)
β ∂Bp

∂Ap
≈

(
∂f

∂TA

∂TA

∂BT

)
β ∂Bp

∂Ap
(S52)

Dividing this inequality by α · (∂Bp/∂BT − 1
)
, we get:

∂f

∂Bp

∣∣∣∣
TA

<
∂f

∂TA

∂TA

∂BT

1(
∂Bp
∂BT − 1

) β ∂Bp
∂Ap

α
(S53)

With ∂TA/∂BT < 0 and setting ∂Bp/∂BT ≈ 0, what makes the inequality more strict, we

get:

∂f

∂Bp

∣∣∣∣
TA

< − ∂f

∂TA

∂TA

∂BT

β ∂Bp
∂Ap

α
=

∂f

∂TA

∣∣∣∣
∂TA

∂BT

∣∣∣∣
β ∂Bp

∂Ap

α
(S54)

From simulations we can roughly estimate
∣∣ ∂TA

∂BT

∣∣ ≈ 1. Using Eq.(S38) we get:

k′BAp

kA(AT − Ap)
= ε ≈ 0.01 <

β ∂Bp
∂Ap

α
(S55)

From this inequality we can see, that the additional feedback loop has an error reducing

effect on variations in CheB, as long as the increase of the absolute value of the denominator

of Eqs. (S44-S47) due to the effect of the additional feedback loop is larger than ∼ 1%.
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2.6.4. Condition for the Effectiveness of the Feedback

From Eqs.(S44)-(S47) we can see that the error reduction mechanism works better the

larger the term β ∂Bp /∂Ap gets. For β ∂Bp /∂Ap we can write:

β
∂Bp

∂Ap
=

(
∂f

∂TA

∂TA

∂Bp
+

∂f

∂Bp

∣∣∣∣
T

)
∂Bp

∂Ap

=


−kA

(
AT − Ap

) kB

kR

Bp
R(

kB

kR

Bp
R
− 1

)2

KB

Bp
+ k′B Ap


× k′BγBBT

(k′B Ap + γB)2

=

(
−µ

χBp

(χBp − 1)2

1

Bp
+ ν

)
κBT , (S56)

where all Greek letters are independent of Bp :

χ =
kB

kRR

µ = kA

(
AT − Ap

)
KB

ν = k′B Ap

κ =
k′BγB

(k′BAp + γB)2

The error correction mechanism performed by the feedback is stronger the larger the absolute

value of Eq.(S56) is. In section 2.6.2 we showed that β < 0. Thus the negative term in

Eq.(S56) is the dominating term. The value of the term χBp is fixed by the condition in

Eq.(S34). This is necessary for the system to be able to respond to changes in concentration

of the ligand. Since all variables denoted by Greek letters are independent of Bp , and χBp

is fixed, the term in Eq.(S56) increases with BT /Bp . Thus the smaller Bp compared to

BT , the better the error correction mechanism of the additional feedback.
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3. TETHERING CELLS EXPERIMENTS

Tethering cell experiments provide a direct readout of the phenotypic differences in the

adapted level of phosphorylated CheY-P. The variations in average time a cells spends

rotating clockwise (CW bias) as a function of the concentration of CheY-P depends strongly

on the steepness of the motor response curve (see Fig. 3b). The distribution of the CW bias

among a small population of cells for different expression levels is shown in Fig. S6. Below

the expression level of the wild type, only a small fraction of switching cells was observed.

For example, at the expression level half of the wild-type, only five out of 25 cells were

switching. Such large variance hampered a reliable determination of the mean and standard

deviation. Also, since a CheY-P level could not be derived for non-switching cells, we were

not able not make a direct quantitative comparison of the data with the model predictions

at these expression levels.
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FIG. S1: Robustness of the chemotaxis pathway to gene expression noise. All cytoplasmic chemo-
taxis genes and two receptor genes are organized in two operons, mocha and meche. Promoters of
both operons are positively controlled by a specific sigma factor, σ28 (FliA), and negatively con-
trolled by an anti-sigma factor, FlgM, which binds to FliA and keeps it inactive. Another major
receptor, Tsr, is under the same control (not shown). There is a strong intercellular variation in
the expression of chemotaxis genes in a cell population, as indicated by varying intensity of three
colours, corresponding to CheA, CheY, and CheZ. Such gene expression noise is characterised by
a strong concerted variation in the levels of all proteins and only a weak uncorrelated variation,
as indicated by the colour of the cells being close to grey. A robust pathway design is able to
compensate for such variations, and the corresponding variation in the level of CheY-P - output
of the pathway - is much smaller than the variation in protein levels.
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FIG. S2: Single-cell levels of CheY-YFP and CheZ-CFP co-expressed from a single IPTG-inducible
promoter (pVS88). a, Mean expression level in absence of IPTG. b, gene expression noise generated
in silico by Eq. (S17) with ν = 0.2 and α = 0.2.
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FIG. S3: Gene expression noise of CheY-YFP and CheZ-CFP co-expressed from pVS88 as in Fig.
1S at 0µM (a), 5µM (b), and 10µM (c) IPTG. Fluorescence values for each induction level are
normalized to the mean expression levels, 1, 2.5, and 14, respectively. The corresponding values
for intrinsic and extrinsic noise are given in Table 1.
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FIG. S4: Fraction of chemotactic cells from computer simulations in a population of 104 individuals
under wild-type gene expression noise. Black line: topology Fig. 1c; dashed line: topology Fig. 1c,
but with CheR binding with Michaelis-Menten constant KR = 3µM to the receptor complex;
dashed-dotted line: topology Fig. 1c, but with a phosphatase substituting auto-dephosphorylation
of CheB-P; red line: BL topology Fig. 1a; blue line: topology Fig. 1b.
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FIG. S5: Same as the E. coli topology Fig. 1c with additional hypothetical feedback loops drawn
as dashed lines: (i) CheR works on inactive receptors with a given Michaelis-Menten constant,
(ii) allosteric recruitment of CheZ by CheY-P without building an active form Z∗, and (iii) direct
regulation of the receptor activity by binding of CheY-P to the receptor complexes.
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FIG. S6: Histogram of the CW bias distribution for populations having different expression levels of
chemotaxis proteins. a wild type cells, b IPTG induceable cells with 3.2 fold wild type expression,
c FlgM minus strain with 6.6 fold wild type expression
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